登录 管理系统 ENGLISH兰大主页站群地图
欢迎来到16877太阳集团安全入口!
您现在的位置:首页>学术动态

【学术报告】赵玉攀:Key factors and generation mechanisms of open government data performance: a mixed methods study

文章来源:学院办公室 作者:周钰涵 审核:刘亚军 发布时间:2022年12月27日 点击数: 字号:【

报告题目:Key factors and generation mechanisms of open government data performance: a mixed methods study

主 持 人:王洪鹏  副教授

报 告 人:赵玉攀  副教授

报告时间:2022年12月27日(周二)19:30

报告地点:腾讯会议 (会议ID:170-394-010 )

报告简介:

Open government data (OGD) has attracted widespread attention and has been widely carried out on a global scale. With the promotion of OGD, OGD performance becomes a meaningful hot topic that deserves in-depth exploration. Therefore, this research focuses on the influencing factors and generation mechanisms of OGD performance. Based on resource-based theory and institutional theory, this paper constructs a model from various dimensions of internal resources and external pressures. Subsequently, from the 122 cities that have constructed OGD platforms, this study uses a mixed research methods approach, which combines the regression analysis method and qualitative comparative analysis (QCA). This study further enriches the studies on OGD performance and provides more targeted paths and references for the implementation of OGD.

开放政府数据在世界范围内受到普遍重视并广泛开展。随着开放政府数据的实施,开放政府数据的绩效成为值得深入研究的热点问题。因此,本研究聚焦开放政府数据绩效的影响因素和生成机制。基于资源基础理论和制度理论,该研究从内部资源要素和外部环境因素等多维度构建研究模型,以我国已实施开放政府数据的122个城市为研究对象,使用回归分析和定性比较分析相结合的混合研究方法进行研究。该研究进一步丰富了开放政府数据绩效的相关理论研究,为开放政府数据的实施提供更加精准的路径和建议。

报告人简介:

202212270822572505.png

赵玉攀,男,毕业于上海交通大学,现为西北农林科技大学人文社会发展学院副教授,主要从事数字治理、电子政务、信息资源管理和政策评估等领域研究,多项研究成果发表在Information & Management, Government Information Quarterly、《情报杂志》等期刊,主持国家自然科学基金青年项目、陕西省社科基金项目,参与多项国家社会科学基金重大项目、国家自然科学基金面上项目等。

【代表性科研成果】

[1]  Zhao Yupan, et al.,(2022). Key factors and generation mechanisms of open government data performance: a mixed methods study in the case of China. Government Information Quarterly. SSCI, JCR Q1, IF=8.49

[2]  Zhao Yupan, Fan Bo.(2021). Effect of an agency‘s resources on the implementation of open government data. Information & Management, 58(4). SCIE/SSCI Top Journal, JCR Q1, IF=10.328

[3]  Zhao Yupan, Fan Bo.(2021). Understanding the key factors and configurational paths of the open government data performance: Based on fuzzy-set qualitative comparative analysis. Government Information Quarterly, 38(3). SSCI Top Journal, JCR Q1, IF=8.49

[4]  Zhao Yupan, Fan Bo.(2018) Exploring open government data capacity of government agency: Based on the resource-based theory. Government Information Quarterly, 35(1). SSCI, JCR Q1, 8.49

[5]  Fan Bo, Zhao Yupan.(2017). The moderating effect of external pressure on the relationship between internal organizational factors and the quality of open government data. Government Information Quarterly, 34(3). SSCI, JCR Q1, IF=8.49

Baidu
sogou